Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo (c. 1170 - 1250), también fue llamado Fibonacci, fue un matemático italiano, famoso por la invención de la sucesión de Fibonacci, surgida como consecuencia del estudio del crecimiento de las poblaciones de conejos, y por su papel en la popularización del sistema de numeración posicional en base 10 (o decimal) en Europa.
El apodo de Guglielmo (Guillermo), padre de Leonardo, era Bonacci (simple o bien intencionado). Leonardo recibió póstumamente el apodo de Fibonacci ( por filius Bonacci, hijo de Bonacci). Guglielmo dirigía un puesto de comercio en Bugía (según algunas versiones era el cónsul de Pisa), en el norte de África (hoy Bejaia, Argelia), y de niño Leonardo viajo allí para ayudarlo. Allí aprendió el sistema de numeración árabe.
Consciente de la superioridad de los numerales árabes, Fibonacci viajó a través de los países del Mediterráneo para estudiar con los matemáticos árabes más destacados de ese tiempo, regresando cerca de 1200. En 1202, a los 32 años de edad, publicó lo que había aprendido en el Liber Abaci (libro del ábaco o libro de los cálculos). Este libro mostró la importancia del nuevo sistema de numeración aplicándolo a la contabilidad comercial, conversión de pesos y medidas, cálculo, intereses, cambio de moneda, y otras numerosas aplicaciones. En estas páginas describe el cero, la numeración de posición, la descomposición en factores primos, los criterios de divisibilidad. El libro fue recibido con entusiasmo en la Europa ilustrada, y tuvo un impacto profundo en el pensamiento matemático europeo.
Leonardo fue huésped del Emperador Federico II, que se interesaba en las matemáticas y la ciencia en general. En 1240, la República de Pisa lo honra concediéndole un salario permanente (bajo su nombre alternativo de Leonardo Bigollo).
Conocido por Fibonacci, hijo de Bonaccio, no era un erudito, pero por razón de sus continuos viajes por Europa y el cercano oriente, fue el que dio a conocer en occidente los métodos matemáticos de los hindúes.
Fibonacci comienza con los rudimentos de lo que se conocía de los números cuadrados desde la antigua Grecia y avanza gradualmente resolviendo proposiciones hasta dar solución al problema de análisis indeterminado que le habían lanzado como desafío.
En la parte original de la obra introduce unos números que denomina "congruentes" y que define, en terminología actual, como c = m.n (m² - n²), donde m y n son enteros positivos impares, m > n. De esta forma, el menor de ellos es 24. Enuncia y muestra que el producto de un número congruente por un cuadrado es otro número congruente.
Utiliza estos números como herramientas para sus posteriores proposiciones y los hace intervenir en una identidad que es conocida como "Identidad de Fibonacci". La identidad es: [1/2(m²+n²)]² ± mn(m² - n²) = [1/2(m² - n²) ± mn]². Esta permite pasar con facilidad de un triángulo rectángulo a otro.
Desgraciadamente el manuscrito está incompleto y un interesante problema queda trunco. Pero el Liber Quadratorum es una de las obras fundamentales del saber humano y de las que honran a la humanidad. Ha sido traducida a muchos idiomas.
No hay comentarios:
Publicar un comentario